LIQUIDITY CONSTRAINTS AND HEALTHCARE EXPENDITURE

Sümeyye Yildiz

University of California, Santa Barbara

February 21, 2020

MOTIVATION

- ► Healthcare expenditures are large and increasing
 - ▶ U.S. healthcare spending \$3.5 trillion, \$10,739 per person in 2017
 - ▶ \$365.5 billion for out-of-pocket expenditures
- ► Liquidity constraints may affect the wellbeing of poor households
 - strong relationship between family income and individuals' likelihood of receiving medical care
 - ► family income < \$40,000, 36% forgo medical treatment
 - ► family income > \$100,000, 8% skip (FRB Survey of Household Economics and Decisionmaking)

This paper

- ▶ Question: How do the liquidity constraints affect healthcare expenditures?
- ▶ How does the effect vary between wealthy and poor households?
- ▶ How is the effect different from non-health expenditures?

LITERATURE

- ► Liquidity constraints
 - ► theory
 - ▶ Deaton (1991), Browning and Crossley (2009)
 - ► empirical
 - ► Zeldes (1989), Runkle (1991), Meghir and Weber (1996), Campbell and Hercowitz (2018)
- ► Health capital
 - ► Grossman (1972), Wagstaff (1986), Case and Deaton (2005), Galama (2015)

Preview of Findings

Theoretical

- higher marginal rate of substitution for health when constrained
- healthcare choice involves multiple periods
- one period ahead expectations in Euler relation for health capital
- ▶ lag terms in linearized Euler relation for health investment

Empirical

- more dynamics in empirical test
- ▶ liquidity constraints bind differentially across wealth
- effects are larger than on non-health consumption
- ▶ more variation in income elasticities, levels and growths

FIRST PASS

- ► Health spending's interaction with income centers around macro-micro controversy in the literature
 - ▶ Macro data: income elasticity > 1
 - lacktriangle Micro data: income elasticity pprox zero
- ► New angle on micro studies:
 - ► Heterogeneity in response is unknown

ENGEL CURVE FOR FOOD

ENGEL CURVE FOR HEALTHCARE

MODEL

Preferences and Technology:

- \blacktriangleright utility over consumption good $C_{i,t}$ and service flows from health stock $H_{i,t}$
- ▶ choose how much to consume $C_{i,t}$, how much to invest for health $d_{i,t}$, and how much to save each period $A_{i,t+1}$
- lacktriangle depreciation of health stock δ^h
 - health technology converts each dollar into a unit in stock of health $\Delta H_{i,t} = f(d_{i,t}) = d_{i,t}$
- ▶ imperfect credit markets with borrowing constraints

► Households maximize lifetime utility:

 $C_{i,t} + d_{i,t} + A_{i,t+1} = (1 + r_{i,t})A_{i,t} + Y_{i,t}$

$$\mathbb{E}_t \sum_{\tau=0}^{T-t} \beta^{\tau} u(C_{i,t+\tau}, H_{i,t+\tau}) \tag{1}$$

subject to:

$$H_{i,t} = (1 - \delta^h) H_{i,t-1} + d_{i,t}$$
 (health capital accumulation) (3)
 $C_{i,t} \ge 0, \quad d_{i,t} \ge 0$ (non-negativity constraints) (4)

 $A_{i,0}, H_{i,0}$ is given

 $A_{i,t+1} \geqslant \underline{A}$

(budget constraint)

(2)

Optimality conditions:

▶ intertemporal condition for non-health consumption

$$u_c^{i,t} = \beta \mathbb{E}_t[(1+r_{i,t+1})u_c^{i,t+1}] + \mu_{i,t}.$$

▶ intertemporal condition for health stock

$$u_{H}^{i,t} = \beta \mathbb{E}_{t}[(1+r_{i,t+1})u_{H}^{i,t+1}] - \beta(1-\delta^{h}) \frac{\mathbb{E}_{t}[(1+r_{i,t+1})\mu_{i,t+1}]}{\mathbb{E}_{t}[1+r_{i,t+1}]} + \mu_{i,t}.$$

 \blacktriangleright $\mu_{i,t}$ is Lagrange multiplier for liquidity constraint

Intratemporal condition:

▶ marginal rate of substitution

$$MRS_{H,C}^{i,t} = \frac{u_H^{i,t}}{u_C^{i,t}} = \frac{\delta^h + r}{1 + r} + \frac{(1 - \delta^h)\mu_{i,t}}{V_A^{i,t}}$$

▶ assume $u(C_{i,t}, H_{i,t}) = \ln C_{i,t} + \ln H_{i,t}$, spending ratio

$$\frac{d_{i,t}}{C_{i,t}} = \frac{1+r}{\delta^h + r} + \left[1 - (1 - \delta^h) \left(\frac{C_{i,t}}{C_{i,t-1}}\right)^{-1}\right]$$

EMPIRICAL MODEL

EMPIRICAL MODEL

▶ felicity function

$$u(\textit{C}_{i,t},\textit{H}_{i,t};\Theta_{i,t}) = \left(\frac{\textit{C}_{i,t}^{1-\varphi}}{1-\varphi} + \frac{\textit{H}_{i,t}^{1-\xi}}{1-\xi}\right) \exp(\Theta_{i,t})$$

► household specific taste-shifter

$$\Theta_{i,t} = g(age_{i,t}, edu_{i,t}, size_{i,t}, race_{i,t}, sex_{i,t}, marital_{i,t}, health indices, health shock)$$

$$+ \zeta_i + \chi_t + \nu_{i,t}$$

LINEARIZED EULER EQUATIONS

▶ non-durable consumption

$$\Delta \ln C_{i,t+1} = \frac{1}{\Phi} \{ \ln (1 + \mu_{i,t}') + \ln \beta_i + \ln (1 + r_{i,t+1}) - \ln (1 + e_{i,t+1}') + \Delta \Theta_{i,t+1} \}$$

▶ health expenditure

$$\begin{split} \Delta \ln d_{i,t+1} &= \frac{\hat{m}}{\xi} \{ \ln (1 + \mu_{i,t}^{\prime\prime\prime} + \mu_{i,t+1}^{\prime\prime\prime\prime}) + \ln \beta_i + \ln (1 + r_{i,t+1}) - \ln (1 + e_{i,t+1}^{\prime\prime\prime}) + \Delta \Theta_{i,t+1} \} \\ &- \frac{\hat{m} - 1}{\xi} \{ \ln (1 + \mu_{i,t-1}^{\prime\prime\prime} + \mu_{i,t}^{\prime\prime\prime}) + \ln \beta_i + \ln (1 + r_{i,t}) - \ln (1 + e_{i,t}^{\prime\prime\prime}) + \Delta \Theta_{i,t} \} \end{split}$$

• $\hat{m} > 1$, stock-flow adjustment

LINEARIZED EULER EQUATIONS

▶ non-durable consumption

$$\Delta \ln C_{i,t+1} = \frac{1}{\Phi} \{ \ln (1 + \mu_{i,t}') + \ln \beta_i + \ln (1 + r_{i,t+1}) - \ln (1 + e_{i,t+1}') + \Delta \Theta_{i,t+1} \}$$

▶ health expenditure

$$\begin{split} \Delta \ln d_{i,t+1} &= \frac{\hat{m}}{\xi} \{ \ln (1 + \mu_{i,t}^{\prime\prime\prime} + \mu_{i,t+1}^{\prime\prime\prime\prime}) + \ln \beta_i + \ln (1 + r_{i,t+1}) - \ln (1 + e_{i,t+1}^{\prime\prime\prime}) + \Delta \Theta_{i,t+1} \} \\ &- \frac{\hat{m} - 1}{\xi} \{ \ln (1 + \mu_{i,t-1}^{\prime\prime\prime} + \mu_{i,t}^{\prime\prime\prime}) + \ln \beta_i + \ln (1 + r_{i,t}) - \ln (1 + e_{i,t}^{\prime\prime\prime}) + \Delta \Theta_{i,t} \} \end{split}$$

 $ightharpoonup \hat{m} > 1$, stock-flow adjustment

LINEARIZED EULER EQUATIONS

▶ non-durable consumption

$$\Delta \ln C_{i,t+1} = \frac{1}{\Phi} \{ \ln(1 + \mu'_{i,t}) + \ln \beta_i + \ln(1 + r_{i,t+1}) - \ln(1 + e'_{i,t+1}) + \Delta \Theta_{i,t+1} \}$$

▶ health expenditure

$$\begin{split} \Delta \ln d_{i,t+1} &= \frac{\hat{m}}{\xi} \{ \ln (1 + \mu_{i,t}^{\prime\prime\prime} + \mu_{i,t+1}^{\prime\prime\prime\prime}) + \ln \beta_i + \ln (1 + r_{i,t+1}) - \ln (1 + e_{i,t+1}^{\prime\prime\prime}) + \Delta \Theta_{i,t+1} \} \\ &- \frac{\hat{m} - 1}{\xi} \{ \ln (1 + \mu_{i,t-1}^{\prime\prime\prime} + \mu_{i,t}^{\prime\prime\prime}) + \ln \beta_i + \ln (1 + r_{i,t}) - \ln (1 + e_{i,t}^{\prime\prime\prime}) + \Delta \Theta_{i,t} \} \end{split}$$

 $ightharpoonup \hat{m} > 1$, stock-flow adjustment

TESTS

Test for liquidity constraints

- \blacktriangleright $\mu_{i,t}$ is an omitted variable, enters into the error term
 - if not constrained $\mu_{i,t} = 0$
 - if constrained $\mu_{i,t} > 0$, correlated with consumption growth, endogeneity!
- ▶ income (current or lagged) as an extra regressor
 - ▶ under null hypothesis, PIH and no constraint, should have no effect
 - under alternative hypothesis, $\mu_{i,t} > 0$, negative coefficient
- ▶ split sample based on wealth, Zeldes (1989) and Runkle (1991)

Test for healthcare expenditure

- ► Case 1: $\mu_{i,t} > 0$ and $\mathbb{E}_t[\mu_{i,t+1}] = 0$
- ▶ Case 2: $\mu_{i,t} = 0$ and $\mathbb{E}_t[\mu_{i,t+1}] > 0$
- ► Case 3: $\mu_{i,t} > 0$ and $\mathbb{E}_t[\mu_{i,t+1}] > 0$
- ► Case 4: $\mu_{i,t} = 0$ and $\mathbb{E}_t[\mu_{i,t+1}] = 0$
- $lackbox{} \mu_{i,t}>0
 ightarrow ext{negative bias}, \quad \mathbb{E}_t[\mu_{i,t+1}]>0
 ightarrow ext{positive bias}$

DIRECTION OF BIAS

DIRECTION OF BIAS

EMPIRICAL ASSESSMENT

Data

- ▶ Panel Study of Income Dynamics (PSID) 1999-2015 waves
- consumption, income, demographics, wealth
- ▶ health spending = out-of-pocket expenditures + health insurance premiums
- net wealth with home equity, robustness without home equity
- Health indices for family
 - ► Acute: stroke, heart attack, cancer
 - Chronic: diabetes, lung disease, heart disease, psychological problems, arthritis, asthma, memory loss, learning disorder
- Health shock: hospitalization index (head or spouse or both)
- ▶ main sample, heads between 25-65 years old
- marginal tax rates, federal and state taxes in disposable income using NBER
 TAXSIM simulator

▶ Descriptive Statistics

EULER EQUATION TESTS

- ightharpoonup the presence of liquidity constraints tested by Lagrange multiplier $\mu_{i,t}$ in the error term
- specification in growth:

$$\begin{split} &\Delta \ln C_{i,t+1} = \alpha_0^c + \alpha_{1i}^c + \alpha_{2t}^c + \alpha_3^c r_{i,t+1} + \frac{\alpha_4^c}{4} \ln y_{i,t} + X_{i,t+1}' \Gamma^c + u_{it+1}^c \\ &\Delta \ln d_{i,t+1} = \alpha_0^d + \alpha_{1i}^d + \alpha_{2t}^d + \alpha_3^d r_{i,t+1} + \alpha_4^d r_{i,t} + \frac{\alpha_5^d}{5} \ln y_{i,t} + X_{i,t+1}' \Gamma_1^d + X_{i,t}' \Gamma_2^d + u_{it+1}^d \end{split}$$

- lacktriangle liquidity constraints do not exist ightarrow $lpha_4^c$ and $lpha_5^d$ are zero
- lacktriangle liquidity constraints exist and binding o $lpha_4^c$ and $lpha_5^d$ are biased for constrained

IDENTIFICATION

- $ightharpoonup r_{i,t+1}$ is not known at t, correlated with expectation error ightarrow instrumental variable
 - ▶ any variable in the information set at time t is valid
- lacktriangledown measurement error in consumption and forecast error for health spending ightarrow MA(1) errors
 - ► t-1 variables as instruments

▶ measurement error

- ▶ instrument set: head and spouse marginal tax rates at t-1, head hours worked at t-1
 - ▶ alternatively income at t-1 is common, control variable in health test
- higher order terms in Taylor expansion, approximation bias
 - ► comparative analysis
 - ► assume no differential bias for food vs healthcare

TEST FOR FOOD CONSUMPTION

Test for Healthcare Expenditure

Test for All Expenditure

Robustness

- insurance choice
 - dummies for private, public, uninsured

▶ insurance

- ▶ misspecification: non-separable leisure
 - ► control hours worked ► hours
- alternative sample stratification
 - ▶ net wealth without home equity ▶ split

SUPPORTING EVIDENCE

INCOME ELASTICITIES

▶ specification in levels: income elasticity of consumption

$$\begin{split} \ln c_{it} &= \alpha_0^c + \alpha_1^c \ln y_{it} + \alpha_2^c H I_{i,t}^a + \alpha_3^c H I_{i,t}^c + \alpha_4^c H_{i,t}^s + X_{i,t}' \alpha_5^c + b_i^c + b_t^c + \iota_{i,t}^c \\ \ln d_{it} &= \alpha_0^d + \alpha_1^d \ln y_{it} + \alpha_2^d H I_{i,t}^a + \alpha_3^d H I_{i,t}^c + \alpha_4^d H_{i,t}^s + X_{i,t}' \alpha_5^d + b_i^d + b_t^d + \iota_{i,t}^d \end{split}$$

HI^a_{i,t} is acute health index, HI^c_{i,t} is chronic health index, H^s_{i,t} is hospitalization index,

 $X_{i,t}$ includes family size dummies, race, sex, marital status of head, education, a quadratic in age of head, type of health insurance and state dummies

Income Elasticity of All Expenditures

Income Elasticity of Food Consumption

INCOME ELASTICITY OF HEALTHCARE EXPENDITURE

Crowding-out

		Wealth Quintile									
	1 st	1 st 2 nd 3 rd 4 th									
		Food consumption									
Chronic index	-0.032**	0.004	-0.005	-0.020	0.014						
	(0.015)	(0.015)	(0.012)	(0.013)	(0.011)						
Hospitalization	-0.055*	-0.032	-0.023	-0.061***	-0.006						
	(0.028)	(0.023)	(0.023)	(0.020)	(0.017)						
		Non-health consumption									
Chronic index	-0.005	-0.001	-0.002	-0.020***	0.002						
	(0.010)	(0.009)	(800.0)	(0.007)	(0.01)						
Hospitalization	-0.048***	-0.009	-0.027*	0.003	-0.036**						
	(0.017)	(0.015)	(0.014)	(0.015)	(0.017)						
		Healthcare expenditures									
Chronic index	0.078**	0.072**	0.093***	0.027	0.026						
	(0.032)	(0.033)	(0.027)	(0.024)	(0.021)						
${\sf Hospitalization}$	0.087	0.234***	0.119**	0.204***	0.139***						
	(0.067)	(0.061)	(0.048)	(0.050)	(0.042)						

Conclusion

► Theoretical Implications:

- higher marginal rate of substitution for health when constraint is binding
- changes in healthcare spending are amplified when constraint is binding
- ▶ health capital choice: deviation due to one period ahead expectation
- ▶ health expenditure growth: multiple periods, stock-flow adjustment

Empirical Findings:

- ► liquidity constraints bind differentially for health-care expenditures
- ▶ more variation in income elasticities, levels and growths
- crowding out of health status

APPENDIX

Descriptive Statistics

	1 st	2 nd	3 rd	4 th	5 th	Total
Net Wealth	-22.2	23.0	85.7	228.8	1,311.4	325.3
Disposable Income	27.0	31.6	41.9	53.4	96.8	50.2
Total Consumption	36.3	39.3	46.4	53.6	70.9	4.9
Food Consumption	6.9	7.6	8.4	9.3	10.9	8.6
Health Expenditure	3.7	4.2	4.8	5.9	8.3	5.4
Age	37.4	38.8	42.7	46.6	50.4	43.2
Education	13.4	13.1	13.5	14.1	15.0	13.8
Household Size	2.7	2.8	3.0	2.9	2.9	2.9
Observations	5930	5925	5927	5927	5927	29636

Measurement Error

- ▶ actual consumption $C_{i,t}^a$
- ▶ observed consumption $C_{i,t} = C_{i,t}^a * \kappa_{i,t}$
- \triangleright $\kappa_{i,t}$ classical, multiplicative measurement error
- $\blacktriangleright \ \Delta \ln C_{i,t+1}^a = \ln C_{i,t+1}^a \ln C_{i,t}^a = \ln (\frac{C_{i,t+1}}{\kappa_{i,t+1}}) \ln (\frac{C_{i,t}}{\kappa_{i,t}}) = \Delta \ln C_{i,t+1} \Delta \ln \kappa_{i,t+1}$
- ▶ linearized-Euler for observed consumption

$$\Delta \ln \textit{C}_{i,t+1} = \frac{1}{\Phi} \{ \ln (1 + \mu_{i,t}') + \ln \beta_i + \ln (1 + \textit{r}_{i,t+1}) - \ln (1 + e_{i,t+1}') + \Delta \Theta_{i,t+1} \} + \Delta \ln \kappa_{i,t+1}$$

◀ identification

Insurance Dummies

Income elasticity of total health expenditures growth for wealth quintiles

∢ insurance

Non-separable leisure

ALTERNATIVE SPLITTING

Income elasticity of total health expenditures growth for wealth quintiles

